Weitere Blogs von Eduard Heindl

Innovationsblog neue Ideen | Guide Stupid merkwürdige Sachen dokumentiert | Energiespeicher Bedeutung und Zukunft| Energy Age the big picture (engl.)

Freitag, 12. Mai 2017

Energy Storage World Forum Konferenzbericht

Trends bei Energiespeicher 2017 

In Berlin fand vom 10-11. Mai das 10. ESWF statt. Ich habe den Teil zum Thema Großspeicher besucht und eigentlich erwartet, auch einige neue Ansätze zu Pumpspeicher und andere Technologien zu erfahren. Das war eher nicht der Fall, es ging hauptsächlich um Batterien.
Abschlusspräsentation auf dem ESWF, der Frauenanteil war nicht immer so hoch.

Was ist ein Energiespeicher

Das Problem liegt wohl eher darin, dass unter Energiespeicher jeder etwas anderes versteht. Aktuell scheint es so, dass im Markt für Großspeicher im wesentlichen Speicher beschrieben werden, die große Leistung für kurze Zeit liefern können. Das sind wichtige Systeme in einer Welt, in der die klassischen thermischen Kraftwerke langsam von Solar- und Windkraftwerken ersetzt werden.
Sehr unterschiedliche Speicher: Strom, Lebensmittel, Daten, und sehr unterschiedliche Reichweiten, aus dem Vortrag von  Julian Jansen, IHS Markit

Regelenergie

Um das Problem genauer zu verstehen, muss man wissen, dass ein normales Kohlekraftwerk nicht bei voller Leistung läuft, sondern für kurzzeitige Schwankungen immer noch eine gewisse Leistungsreserve (~10%) vorhält. Kommt es jetzt zu einem zusätzlichen Bedarf, weil gerade eine große Maschine eingeschaltet wird, muss einfach die Leistung etwas hochgeregelt werden. 
Bei einer Solarzelle oder auch bei einem Windkraftwerk geht das nicht, diese werden normalerweise hundert Prozent der Leistung an das Netz abgeben, obwohl theoretisch auch weniger möglich wären, was aber offensichtlich eine Verschwendung wäre.
Einsatzgebiete von großen Batterien zur Netzstabilisierung, Quelle: eon

Um diese Regelleistung ohne den Aufwand eines herunter geregelten Kohle-, Erdgas- oder sonstigen thermischen Kraftwerks zu managen, scheinen Batterien zusammen mit leistungsfähiger Elektronik einen guten Dienst zu tun.  

Typisch an diesen Systemen ist, dass sie nur sehr kurz Energie liefern können, typische Werte liegen unter einer Stunde.

Speicherbedarf für große Energiemengen, Dunkelflaute

Eine der spannendsten Fragen in der Speicherbranche ist der Bedarf an Speicher für große Energiemengen, also nicht um kurzzeitig das Netz zu stabilisieren sondern um etwa elektrische Energie vom Tag aus Solarenergie in die Nacht zu verschieben.

Hier war ein Vortrag von Dr. Björn Peters interessant, der für Deutschland die Situation mit 100% Wind und Solarenergie berechnet hat. Sind 120 GW PV und 120 GW Wind installiert, so genügt dies langfristig theoretisch um den Strombedarf zu decken. Allerdings müssen ausreichend Speicher zur Verfügung stehen. In dem Modell wurde ein perfekter Speicher mit 100% Wirkungsgrad angenommen (Reale Speicher liegen eher bei 80 %, aber die Differenz ist nicht entscheidend).

Die Überraschung ist, dass für die Phasen ohne Wind und Sonne, sogenannte Dunkelflaute, massive Speicherkapazitäten nötig sind. So wäre zur überbrückung der Dunkelflaute im Herbst 2016 etwa 80.000 GWh Speicherkapazität erforderlich gewesen. Bedenkt man, dass nur 40 GWh in Deutschland verfügbar sind, wird das Problem offensichtlich.
Die Dunkelflaute, der gefährliche Elefant, wie er in der Zeitschrift Sonne Wind & Wärme dargestellt wird.

Vermutlich können solche Phasen nur mit thermischen Reservekraftwerken, ob dies nun Blockheizkraftwerke oder Gasturbinen sind, überbrückt werden.

Alternativ könnte man Stromleitungen nach Afrika oder Sibirien legen, die insgesamt 8.000 km lang wären und eine Leitungskapazität von mindestens 50 GW benötigen, leider, im aktuellen politischen Umfeld, eher schwierig umzusetzen.

Wachstum des Speichermarkts

Sicher werden die extremen Speicher nicht so schnell kommen, aber das Wachstum der Speicher ist größer als das Wachstum der PV und Wind Märkte, da an vielen Orten das Netz langsam an die Grenzen seiner Steuerfähigkeit kommt. 

Speicherbedarf im UK erreicht 15 GW innerhalb von 15 Jahren

In mehreren Vorträgen wurden Folien aufgelegt, die den Speicherbedarf, zumeist aufgeschlüsselt nach Hausbatterien ("behind the meter") und anderen Batterien im Netz, analysierten. Zumeist wird hier nicht von Speicherkapazitäten sondern von Leistungen gesprochen, da es noch um die Stabilisierung des Netzes geht. 
Gegenüber heute ist ein Faktor 10 bis 100 innerhalb von 15 Jahren zu finden.
Der größte Energie Speichermarkt ist wohl in 2017 in Südkorea! (Quelle: Jansen, IHS Markit)

Warum besuche ich solche Konferenzen?

Am Ende der Konferenz hat man immer das Gefühl, die Aussagen schon ein dutzend Mal gehört zu haben. Allerdings ist auch interessant, was fehlt, niemand hat mehr vom Power to Gas gesprochen und Wasserstoff ist ebenfalls nicht vorgekommen. 
Sehr gefreut hat mich, dass der Moderator meine Speichertechnologie, Gravity Storage, als mögliche Lösung für Großspeicher erwähnt hat. 
Ein weiterer wichtiger Punkt sind immer die Gespräche in der Kaffeepause, man erfährt viel über Märkte und kann seine Kontakte gut pflegen.

Bis zur nächsten Konferenz, weitere Konferenzberichte finden sich unter:

Sonntag, 26. März 2017

Wieviel Solarzellen und Speicher braucht die Welt?

Solarenergie für Deutschland Europa und die Welt

Es gibt in der Solar-Szene ein Bild (Bild 1), dass vermutlich fast jeder kennt, es zeigt, wie groß der Flächenbedarf ist, wenn die Welt auf Solarenergie umgestellt wird. Es wurde, soweit mir bekannt, von Frau Nadine May erstmals in ihrer Diplomarbeit bei der DLR veröffentlicht [1]:
Bild 1: Flächenbedarf für Solarkraftwerke, nach Nadine May [1]
Dieses Bild ist weit verbreitet und soll auf seine Richtigkeit überprüft werden. Zunächst ist zu bemerken, dass Algerien das Land das die Quadrate für die Welt und Europa enthält und Libyen, das Land das möglicherweise die Deutschen Solarkraftwerke bekommt, keine Kolonien mehr sind.

Die Quadrate haben eine Kantenlänge von: Welt 254 km,  Europa 110 km und Deutschland nur 45 km.

Wie groß ist der Energiebedarf der Welt?

Der Energieverbrauch der Welt wächst ständig (Siehe Bild 2), daher kann man schlecht den Energiebedarf nur mit einem Bezugsjahr angeben. Aktuell liegt der Bedarf bei über 30.000 TWh (30.000.000.000.000 kWh) wenn man die Angaben der Internationalen Energieagentur auswertet. Ich habe dabei Umwandlungsfaktoren für bestimmte Energieformen zu Strom berücksichtigt.

Bild 2: Weltweiter Energiebedarf für Strom, Transport und alle anderen Formen
Diese Energie soll nun mit Solarzellen aufgefangen werden und in Strom umgewandelt werden. Dabei gibt es mehrere Faktoren zu berücksichtigen, den Wirkungsgrad, die Einstrahlung im Lauf eines Jahres und die notwendige Speicherung der Energie für die Nacht.

Solarzellen aus Silizium erreichen einen Wirkungsgrad von rund 20% und sind aktuell die günstigste Methode in großem Umfang Strom aus Solarenergie zu erzeugen.

Die Einstrahlung ist in verschiedenen Regionen der Erde sehr verschieden, insbesondere muss man immer zwischen direkter und globaler Einstrahlung unterscheiden. Für die Photovoltaik (PV) spielt nur die globale Einstrahlung eine Rolle. Daher wird nur diese Betrachtet.

Bild 3: Globalstrahlung senkrecht zum Boden (Quelle: WEC [2])
Auf der Karte sieht man, dass viele Gebiete eine jährliche Einstrahlungsleistung von 2000 kWh pro Jahr haben, insbesondere die Sahara, aber auch auf anderen Kontinenten (Ausnahme: Europa!), derartig gute Standorte zu finden sind.

Notwendige Flächen

Die notwendigen Flächen der Solarzellen kann man jetzt einfach berechnen. Für die Welt benötigen wir 30.000.000.000.000 kWh im Jahr, da ein Quadratmeter eine Einstrahlung von 2000 kWh hat wären das theoretisch 15.000.000.000 m² oder 15.000 km². 
Jetzt kommt der Wirkungsgrad ins Spiel, da nur 20% in Strom umgewandelt werden, benötigen wir die fünffache Fläche, das sind 75.000 km². Allerdings muss man die Zellen aufbauen können und benötigt Wege und weitere Flächen für Wechselrichter und Speicher, das dürfte den Flächenbedarf verdoppeln. Damit liegt man bei 150.000 km².
Der Transport und die Speicherung von Energie, die zwingend nötig ist, da Nachts die Sonne nicht scheint, wird etwa weitere 25% der Energie auffressen, damit wären wir bei 200.000km².

Dies entspricht einem Quadrat von 448 km Kantenlänge, ganz grob gesagt doppelt so groß wie in der Zeichnung.

Faire Welt

Aktuell verbrauchen nur wenige Menschen viel Energie und viel Menschen wenig Energie. Ich bin überzeugt, dass Langfristig alle Menschen mindestens den Lebensstandard wie in Deutschland erreichen wollen. Dafür dürfte pro Person eine Energiemenge von 15.000 kWh/a notwendig werden. Es gibt einige Länder, die bereits heute einen deutlich höheren Energiebedarf haben aber wir wollen hoffen, dass Energieeffizienz auch eine gewisse Einsparung bewirkt. 

Bei einer Weltbevölkerung von 8 Mrd. Menschen wird das einen jährlichen Energiebedarf von 120.000 TWh oder 120.000.000.000.000 kWh, also das Vierfache des bisherigen Bedarfs, ergeben. Damit würde sich die Fläche mit Solarzellen immerhin auf ein Quadrat mit einer Kantenlänge von 1000 km vergrößern (Bild 4).

Bild 4: Die Welt vollständig mit Solarenergie in Zukunft versorgen

Weiterhin ist die Fläche von einer Million Quadratkilometer immer noch klein im Vergleich zur Sahara, aber ein ernsthafter Teil der festen Erdoberfläche. Die Welt hat etwa 15 Millionen Quadratkilometer sonnige Wüsten, das bedeutet, etwa 1/15 dieser Fläche muss in Zukunft mit Solarzellen für die Energieversorgung verwendet werden. 

Speicherbedarf

Geht man davon aus, dass die Energie mindestens für einen Tag gespeichert werden können muss, so erfordert das eine Speicherkapazität von 330 TWh (330.000 GWh), 
zum Vergleich: Deutschland hat Pumpspeicher mit einer Kapazität von 0,04 TWh. 
Sollten große Lageenergiespeicher mit 80 GWh Kapazität (500 m Durchmesser) das Problem lösen, müssten davon beachtliche 4000 Stück gebaut werden.

Will Elon Musk das mit Batterien aus der Gigafactory lösen, so muss die Gigafactory bei einer geplanten Kapazität von 50 GWh pro Jahr, über 6000 Jahre Produzieren oder 400 Gigafactories 15 Jahre lang produzieren um erstmals die Kapazität zur Verfügung zu stellen und immer weiter Produzieren, da Batterien nach 15 Jahre ersetzt werden müssen.

Gigantische Umstellung

Soll die weltweite Umstellung auf Solarenergie gelingen, werden gewaltige Bauten in Form gigantischer Solarfelder nötig. Sicherlich reichen dafür nie die Dachflächen. Weiterhin geht es um Investitionen die in der Größenordnung des globalen Bruttosozialprodukts von einem Jahr liegen (80.000 Mrd. $). Das klingt viel, ist aber von der Menschheit zu schaffen, insbesondere wenn man bedenkt, dass danach Energie sauber, ohne CO2 und zu geringen Kosten produziert wird.

Ich glaube, wir schaffen das!